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VALIDATION OF A PSEUDO-SOUND THEORY FOR THE PRESSURE-DILATATION

IN DNS OF COMPRESSIBLE TURBULENCE

J. R. RISTORCELLI* AND G. A. BLAISDELL¢

Abstract. The results of an asymptotic theory for statistical closures for compressible turbulence are

explored and validated with the direct numerical simulation of the isotropic decay and the homogeneous shear.

An excellent collapse of the data is seen. The slow portion is found to scale, as predicted by the theory, with

the quantity Mt 2 and es. The rapid portion has an unambiguous scaling with ot2M2tcs[P_ Sk 2- 1](_-7, ) . Implicit

in the scaling is a dependencc, as has been noted by others, on the gradient Mach number. A new feature

of the effects of compressibility, that of the Kolmogorov scaling coefficient, t_, is discussed. It is suggested

that t_ may contain flow specific physics associated with large scales that might provide further insight into

the structural effects of compressibility.
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1. Introduction. The validation, using DNS data, of the scaling predicted by an analytical develop-

ment for the pressure dilatation, < pd >, appearing in the single point closures for compressible turbulence,

given in Ristorcelli (1995, 1997), is the subject of this article. The analysis is relevant to shear flows with

negligible bulk dilatation and low M 2. These restrictions are satisfied in a wide number of flows ranging

from simple shear layers of theoretical interest, Papamoschou and Roshko (1988), to the complex shear layers

associated with supersonic mixing enhancement, Gutmark et al. (1995). In most of these supersonic shear

layers a Mach number based on the fluctuating velocity of the fluid particle is small. A Mach 4 mean flow

with a turbulence intensity of 8 per cent has a turbulent Mach number of Mt -- 0.32. The square of this

turbulent Mach number, the appropriate perturbation expansion parameter arising from the Navier-Stokes

equations, M 2 _ 0.1, is small. The existence of this small parameter, Mt 2, allows some analytical results.

The article is primarily a study of the analysis of Ristorcelli (1995, 1997) in the light of recent DNS

results of Blaisdell. The representations given in Ristorcelli (1995, 1997) were obtained using scaling argu-

ments about the effects of compressibility, a singular perturbation idea and the methods of statistical fluid

mechanics. While the results are expressed in the context of a statistical turbulence closure, they provide,

with few phenomenological assumptions, an interesting and clear physical model for the scalar effects of com-

pressibility. For a homogeneous turbulence with quasi-normal isotropic large scales the expressions derived

are - in the small turbulent Mach number squared limit - exact. The analytical results, which are a rigorous

consequence of the low M_ assumptions and do not contain any unspecified empirical coefficients, are shown

to predict the scalings in the DNS of homogeneous compressible turbulence.
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2. Preliminaries. It has been shown, l_istorcelli (1995, 1997), that a low fluctuating Mach number

expansion for the compressible Navier Stokes equations produces a diagnostic relationship for the dilatation.

The small parameter in these expansions is the square of the fluctuating turbulent Mach number: vM 2 and

Mt = _/c_, where fi = 2k/3 = (ujuj)/3 and c_ = _/P_/p_. To leading order, the density fluctuations are

given, in nondimensional units, by the solenoidal pressure fluctuations, "_pl = P,nc = Pl and the continuity

equation becomes a diagnostic relation for the fluctuating dilatation,

(1) -_/d ---- P,t +vkP,k •

The subscript on Pl has been dropped. It is seen that one does not need to obtain a solution to the evolution

equation for the compressible velocity field, wi, in order to obtain its dilatation, d = wi,i. A very useful result.

The dilatation is diagnostically related to the local fluctuations of the pressure and velocity; it is the rate of

change of the incompressible pressure field Pl,jj = (vivj),ij, following a fluid particle. Constitutive relations

for the pressure-dilatation can be found by taking the appropriate moments of the diagnostic relation for

the dilatation to produce,

D
(2) -27 < pd > = D---t < pp >"

The near field compressibility effects, as manifested in < pd >, have been directly linked to the solenoidal

portions of the velocity field. This fact has been exploited to obtain expressions for thc pressure-dilatation

covaxiances, Ristorcelli (1995, 1997):

(3)

< pd > = - xpdM 2 [Pk - pe + Tk] - _k M 2 Xpd Dt

+ _XpdMta_/(_/-- 1)(PT + De + TT)]

where

(4)

_pd

1 + 2IpdMt 2 + 3I_M4"_(_ - 1)

i;r el

Xpd = 3 4
1 + 2IpdM_ + _IpdM_ 7(7 - 1)

zpd= }I; + I;d + 5w

12 3

Note that T = [3S 2 + 51)d2]. The nondimensional strain and rotation rates arc given by: _2 = (Sk/es)2,

I?V2 = (Wk/e,) 2 where S -- _ and W -- _. The strain and rotation tensors are defined

in analogy with the incompressible case, i.e., traceless Sij = ½[U_,j +Uj,_-2Oh,j], Wij = ½[U_,j-Uj,,].

Here Mt = fi/c_ where fi = 2k/3 =< ujuj > /3, c2oo = "IPcc/p_ and a comes from the Kolmogorov

scaling relation g = a(2k/3)3/2/es. The constants, denoted by the Ii, in these expressions are given by

integrals of the longitudinal correlation function, f: I_ = fo _fad_, and I[ = 2 fo _fd_. A quick order

of magnitude estimate for the integrals can be made using f = e -_2'r/a. The following values are found:

a _ 1.273. The values found from high Reynolds number wind tunnel data are similar:

I_ ----0.300, I[ -- 1.392, Zhou (1995).



3. Isotropic decay. For the isotropic decay the expression for the pressure-dilatation becomes

(5) < pd >= XpdM2t es.

Here f3 has been set to unity. The sign of < pd > is positive indicating a net tranfer of energy from potential

to kinetic modes. Rearranging, to isolate the scaling, produces

_418
(6) < pd > -- 3 1

4 TS ILl2 "M 2 es Xpd -- 1 + 3-1 ""t

Terms of order Mt 4 have been dropped. Earlier estimates given in RistorceUi (1995), shown above, indicate

I_ = 0.5 - 0.3. The theory therefore predicts an asymptote for Xpd as the turbulent Mach number vanishes:

(7) Xpd _ 0.666 - 0.40 as M_ --* O.

The DNS results, shown in Figure 1, were provided by Blaisdell for three different initial turbulent Mach

numbers. As a service to the reader, the figure identifies two definitions of the turbulent Mach number: that

used by Blaisdell et al. (1993) in his simulations, M b, and that which comes from the perturbation analysis

of Ristorcelli (1995, 1997). The present compressible DNS reflect a consistent set of initial conditions as

described in Ristorcelli and Blaisdell (1997).

The agreement with the DNS, shown in Figure 1, is very good. The theory has been corroborated without

a posteriori adjustment of constants. The actual values of the constant could in principle be calculated from

the DNS. As they are expected to be weakly dependent on initial conditions, this course is not followed

further - what has been presented is sufficient for verification. Moreover, the slow portion of the pressure-

dilatation is nominal compared to the rapid portion which is the most important contributor in the shear
flows of interest.

4. Homogeneous shear. The pressure-dilatation in the homogeneous shear is now investigated. The

instantaneous pressure-dilatation is seen in Figure 2. Also shown are its averaged values following the

procedure of Sarkar (1992). Here the time integral of the pressure-dilatation has been taken: the vertical

axis being -_-_ f _ d(St). The oscillations in the pressure-dilatation associated with the relaxation from

initial conditions are not seen. There is, nonetheless, a build up of the oscillations which has been linked to

the compressible component of the pressure field, Sarkar (1992), Blaisdell and Sarkax (1993). An explanation

consistent with this observed behavior has been advanced in Ristorcelli (1997b).

For homogeneous shear, the expression for the pressure-dilatation can be simplified. For simple shear

7- ----882 and, neglecting terms of order M 4t, one obtains

(8) < pd >= --XpdM 2 [Pk - e] - k M 2 Xpa 8Ds2
Dt "

Here S = shk._, For Blaisdell's homogeneous shear, in which S = const., the expression can be rearranged

< pd >= - XpdMt 2 es[-_, 1]

(9) _ 16X_ d M?e, (__sk)2 D Skn(st) e,

Note that the coefficent of the first term, Xpd, ignoring the small slow pressure contribution, scales as

Xpd "_ -77- , accounting for the definitions of the X'S, the pressure-dilatation can be rewritten as

(10) < pd >,,_ -[a2(Sk)2M2t es( Pk - 1)] I F [1 + 1 D Ski
e, e8 _ 1 D(St) e_ '



Astheflowevolves,it isexpectedthat I F --+ const and [1 + _.-_1_1D(D0 _k] __+1. The scaling of < pd > with
a

the term in the first set of brackets will be investigated.

4.1. "Non-equilibrium" aspects of < pd >. The homogeneous shear DNS is not an equilibrium

flow. Using sk as an indicator of the non-equilibrium nature of the flow one sees that D skD-_¥7 --+ 0 only in

the latter stages of the DNS, see Figure 3 bottom plot. Two regions of the flows evolution are accordingly

distinguished: a nonequilibrium earlier portion in which D/Dt S _ O, and a structural equilibrium portion

for which D/Dt S --+ O. If the flow is in structural equilibrium, s_k __+const, one obtains the simplest form

of the pressure-dilatation model: denote it by the subscript "se",

(11) < pd >se= -xpdM2 [Pk- ¢].

Let this be called the structural equilibrium form of the pressure-dilatation (which does not mean that the

flow is in equilibrium as Pk _ 6).

Figure 3 indicates the relative contributions of the two terms making up the the pressure-dilatation

model. It is seen at small times, that both terms make non-negligible contributions to the pressure-dilatation.

As the structural equilibrium is approached, D/Dt S --+ O, and the second term's importance, as might be

expected, becomes negligible. This is manifested in the second graph were the ratio of < pd >se to the total

< pd > approaches unity. Also shown is the percentage time rate of change of the relative strain _k D SkD_ ¢o "

The curves are noisy as they involve differentiation of numerical data; the trends are nonetheless apparent.

4.2. Pressure-dilatation sealings. The appropriately sealed integrals of < pd > will now be taken.

In this way one can establish whether the scalings predicted by the model are correct. In the latter portions

of Blaisdell's DNS, St > 10, about three to four eddy turnovers past initialization, a structural equilibrium

is approached. In this region the scaling suggested by

(12) <pd >_ -[c_2(Sk)2M 2 e,( P-_ - 1)] I F
Es es

is investigated. After the scaling < pd > the time integral _ f()d(St) will be taken. Let the symbol

fsT denote this averaging operation. The integrals

I° = /ST < pd >

fs <pd>I1 =
T Cs

s < pd >

i3=£ <_?d>T M2e_[P_-_ - 11(_) 2

/4= 2 2 TP_ -- Sk 2
r _ Mi6,[e -1](7)

will be computed from the data. The integrals are shown in Figure 4. The integration starts at St = 9; the

integrals are normalized by their values at St = 10. If the scaling suggested by the analysis of RistorceUi

(1995, 1997) is correct the last integral,/4, will be approximately constant, reflecting the fact that the time

integral _ f I[d(St) --_I F and D_ _+ 0 as the equilibrium portions of the DNS are attained. Inspection of

/4 in Figure 4 shows this to be the case. The period of time 10 < St < 16 corresponds to about one eddy

turnover time, k/e.



4.3. The gradient Mach number. The largest relative collapse of the scaled integrals of < pd >

occurs with the quantities M2(Sk) 2-g - the collapse from 12 to 13. The quantity M2(Sk)2-/- can be interpreted

of as the square of the gradient Mach number. The pressure-dilatation is a strong function of the gradient

Mach number. Sarkar (1995) has defined a gradient Mach number as Mg = Sg/c; the transverse two-point

correlation of the longitudinal velocity is used as the length scale, g. In this article g will be taken as the

traditionally defined longitudinal length scale that occurs in the Kolmogorov scaling: g = _(2k/3)3/2/e s. In

which case a mean strain Mach number is defined:

(13) Ms- Sg _ 2 Sk M 2^

In fact, the curve overshoots the optimum collapse (a horizontal line): the gradient Mach number is increasing

faster than < pd >.

4.4. The Kolmogorov scaling coefficient. The collapse, In, is much better when the Kolmogorov

coefficient is included. A new feature associated with compressibility, that of the Kolmogorov scaling co-

efficient, a, is thus apparent. The values used for a come from Blaisdell's DNS. The longitudinal integral

length scale, £, k and c_ are calculated from the DNS. The Kolmogorov relationship, 6 = c_(2k)3/2/_ is used
to find a.

The pressure-dilatation model is sensitive to variations in the Kolmogorov scaling parameter: in fact

it is decreasing as rapidly as Ms is increasing. The definition for the mean gradient Mach number given

above, Ms _ 2 Sk _5T7. ,vlt, implicitly assumes _ --_ 1. Mt and sk, _ are not new quantities for describing turbulence

in single point closures; c_, however, is new. This distinction is made in order to recognize a as a new

independent quantity.

The Kolmogorov constant is thought to be a universal constant for high Reynolds number in isotropic

turbulence; for non-ideal, finite Reynolds number, anisotropic turbulence a is a flow specific quantity. It is

this fact that makes developing a turbulence model from the analysis of Ristorcelli (1995, 1997) difficult: a

choice for a must be made and for any given flow the choice is not, a priori, known. The value of c_ can be

thought of as describing some large scale structural aspects of the flow: it, after all, relates the kinetic energy,

its cascade rate and the two-point correlations. These ideas arc further developed in Pdstorcelli (1997c).

5. Summary and Conclusions. The pressure-dilatation is found to be a nonequilibrium phenomena.
2 2Sk2

It scales as a M i (-_7,) [Pk/6s -- 1]. For it to be important requires both 1) the square of the gradient Mach

number, M 2, to be substantial and 2) for the flow to be out of equilibrium Pk _t 6. The pressure-dilatation

has been observed to be either positive or negative. Its dependence on the non-equilibrium nature of the flow,

Pk _ 6, indicates that the pressure dilatation can be either a stabilizing or destabilizing. These predictions

are consistent with the DNS of Simone et al. (1997) who observes such behavior as related to the anisotropy,

b12 = (uv)
2k "

(2k_3/2/6Except for the well-established Kolmogorov scaring, g _ _5 J _ ,, and the quasi-normal assumption, no

additional phenomenological assumptions are made. The pressure-dilatation is a hmction of the Kolmogorov

scaling coefficient and this is expected to be an important feature in models for the effects of compressibility

on turbulence. The Kolmogorov coefficient is a flow dependent quantity: there is little known about its

dependence in non-ideal anisotropic, strained, inhomogeneous -- flow situations. The appearance of the

Kolmogorov coefficient, in as much as it links the energy, the spectral flux and a two-point length scale, is

an indication of dependence on large scale structure.

In all likelyhood, there are many aspects of compressibility that will contribute to the unusual and

dramatic stabilizing effects of compressibility. It is unlikely that any one term in a statistical closure will



accountfully for thediversephysicalmechanisms.Thisarticlehasfocusedononeof theseeffects,the
pressure-dilatation.Thepresentanalysistreatsonlythe"scalar"effectsofcompressibility- thereductionk
through the dilatational covariances in the energy budget; it cannot account for the reduction in the shear

auisotropy, b12, or the normal anisotropy, b22, so important to the production mechanism for the shear stress,

< vlv2 >. To account for these more substantial structural effects appears to require a compressible pressure-

strain representation accounting for the effects of compressibility. This has been indicated in Blaisdell and

Sarkar (1992), Vreman et al. (1996) and also Simone et al. (1997).
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